From Internet to Service Science

Lothar Mackert IBM Deutschland GmbH mackert@de.ibm.com

NETT, November 28, 2008

© 2008 IBM Corporation

The 80s - the Networking Middle Ages

WAN:

- PTT Monopolies all over Europe
- Very low Bandwidth at high prices
- Analog technology predominant
- Mainly Host to Terminal Connections
- Dominated by Proprietary Protocols (eg SNA, DECnet, Appletalk)
- Point to point connections
- Applications firmly tied to Communications Stack
- Interoperability was a big Issue

LAN:

- 4/10 Mbit/s Ethernet/Token Ring
- Inefficient integration with WAN

SNA – IBM's flagship

- IBM's Proprietary Networking Architecture (1974)
- De Facto Standard for Enterprise Networking in the 80s
- Highly Efficient and Secure
- Optimized for slow and error prone Networks
- Connection Oriented
- LAN WAN Connectivity challenging
- Interoperability with non-SNA networks initially difficult.
- Applications, databases and communications all mingled into same protocol
- Advanced Peer to Peer Networking addressing need for endto-end networking
- IBM opened specifications in the late 80s

OSI – Created to be the Future 'Internet' Standard

- Famous 7 Layers: OSI Reference Model (1978)
- Layers reduce Complexity and enable isolated Changes and Extensions
- Clear separation between Service and Protocol
- 'Design by Committee' Approach
- Too many Compromises: Competing Technologies adopted in parallel, numerous optional features
- Need for OSI Profiles Increase Complexity and Reduce Interoperability
- Considered too Complicated, Inefficient and partially unimplementable
- Forklift Approach:eliminate all existing protocols and replace

TCP/IP – The Clear Winner

- Created by DARPA (ARPANET 1970)
- Pragmatic Approach, Simplified Protocols
- Best option for interconnecting LANs and WANs
- Strongly tied to UNIX
- First Open Sourced Intellectual Capital Initiative
- Clear Separation of Applications from Data Transport
- End-to-end Principle: connectionless within the network, reassembly/intelligence at the edges
- Attitude: 'we reject kings, presidents and voting. We believe in rough consensus and running code' (Clark)

More than 1 Billion Internet Users Today

USA	
Population	335 Mill
Internet Users	235 Mill
% Population	70,2%
Usage Growth 00-07	117%

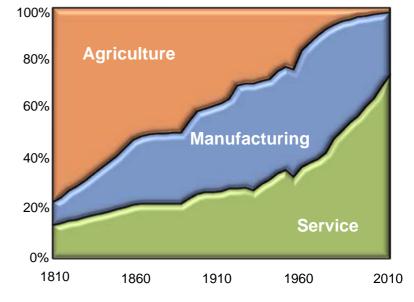
Europe

Population	810 Mill
Internet Users	338 Mill
% Population	41,7%
Usage Growth 00-07	221%

Asia

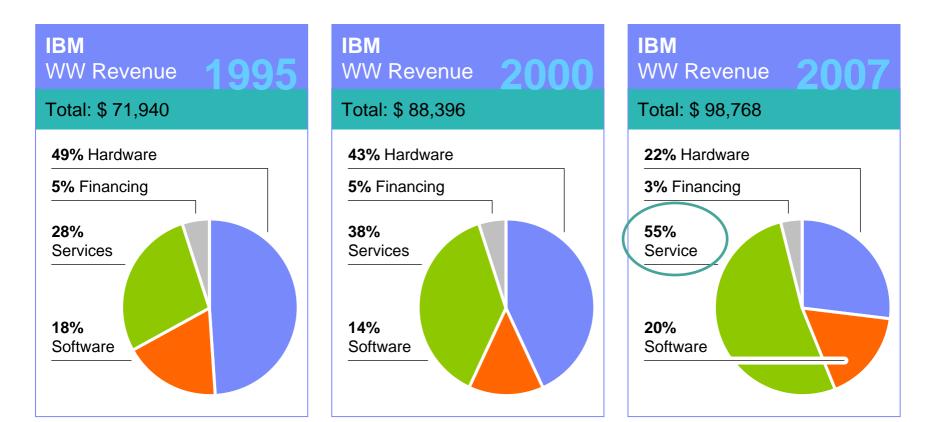
Population	3.7 Bill
Internet Users	460 Mill
% Population	12,4%
Usage Growth 00-07	302%

Evolution / Challenges


- Mobile
- Voice, video
- Security
- Social Networking
- Address shortage -> IPv6
- Pervasive Computing

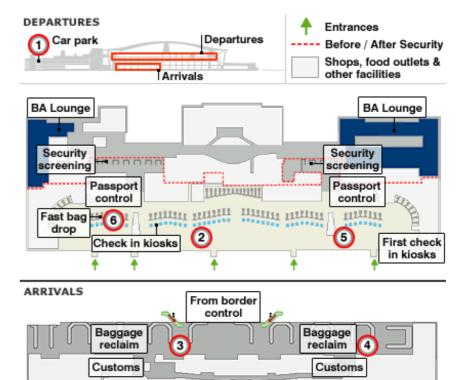
The Rise of the Service Economy

Internet Evolution


- Intermediation of value networks
- Location Independence

GDP Contribution of Industrial Sectors in Germany

Explosion of Services in IT: Example IBM



Source: IBM Annual Reports

Why do we need Service Science?

Heathrow T5: An Example for Murphy's Law in Services

Exit

- 1. 0400 Passengers and staff have trouble locating car parks
- 2. 0400 Delayed opening of check-in results in long queues
- 3. 0442- First passengers arrive early but wait an hour for luggage
- 4. All morning Clogged conveyor leads to long wait for luggage
- 5. 1630 Baggage system failure; all check-in at T5 suspended
- 6. 1700 BA suspends check-in of all luggage into hold

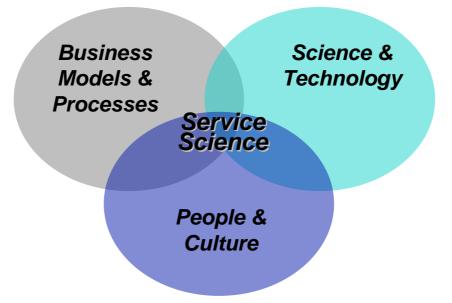
SOURCE: BAA

Why Should We Care?

Academics need to make service innovation a priority

- Job placement for existing students
- University competitiveness for prospective students
- Continued attractiveness to business for shared research

Governments need to make service innovation a priority


- GDP growth of nations increasingly depends on it

Businesses need to make service innovation a priority

- Revenue and profit growth increasingly depend on it

What is Service Science?

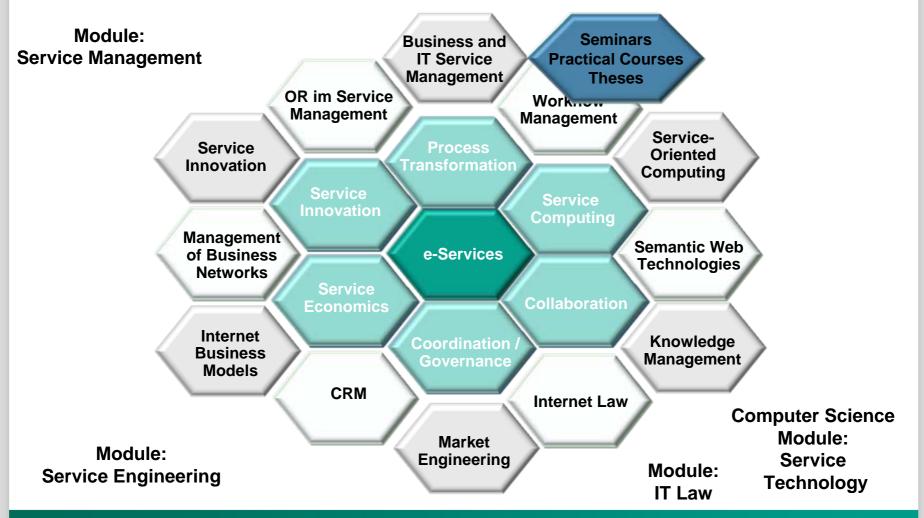
Design, Evolution, Processes and Data of Service Systems To Create Value, Increase Productivity, Improve Quality, Control Risk, Innovate for Growth and Operate in Dynamic Environments

Interdisciplinary Application of

Science, Management, and Engineering Disciplines to Services

Services Science Challenges

Business Science & Models & Technology **Processes** Service Science Service Innovation Service Industrialization Globalization **Modelling/Simulation Service Life Cycle** People & Governance Culture Legal Requirements Automation **IP** Rules Web based Services Service Quality SOA Service Frameworks **Service Culture Self-service Approaches Demographic Change** eSourcing **Knowledge Harvesting** Recruiting **Skill Development**


Growing Investments in Service Science worldwide

Science curricula and programs

Example: Service Science Curriculum at KSRI (Karlsruhe Service Research Institute)

Skills for the 21st Century

T-shaped people – They speak the language of many disciplines, and are deep in at least one area